Hiérarchiser les radiographies thoraciques pathologiques à l'aide du Deep Learning
MARDI 22 JANVIER 2019 Soyez le premier à réagirSelon une étude parue dans la revue Radiology, un système de Deep Learning peut hiérarchiser les radiographies thoraciques pathologiques, réduisant potentiellement le délai de consultation des examens par les radiologues. Un système de détection des mots clés dans les comptes rendus a été utilisé dans cette étude.
Les radiographies thoraciques représentent 40% de l’imagerie diagnostique dans le monde. Ce volume peut créer des arriérés importants dans les établissements de santé. Au Royaume-Uni, on estime à environ 330 000 le nombre d'examens de routine qui ont attendu plus de 30 jours pour recevoir un compte rendu.
Réduire les délais d'attente de résultats pour les radiographies pathologiques
"Il n’existe actuellement aucun moyen systématique et automatisé de trier les radiographies pulmonaires et de classer celles qui présentent des résultats critiques et urgents au sommet de la pile du radiologue", déclare le Dr Giovanni Montana, anciennement du King's College London. à Londres et actuellement à l’Université de Warwick à Coventry, en Angleterre et co-auteur d'une étude sur ce thème parue dans la Revue Radiology. Un outil de Deep learning (DL) a été proposé comme moyen automatisé de réduire cet arriéré et d'identifier les examens qui méritent une attention immédiate, en particulier dans les systèmes de soins de santé financés par des fonds publics.
Des images classées à partir des mots clés tirés des comptes rendus
Pour l’étude, le professeur Montana et ses collègues ont utilisé 470 388 radiographies thoraciques anonymisées d’adultes afin de mettre au point un système d’IA permettant d’identifier les principaux résultats. Les comptes rendus radiologiques ont été pré-traités à l'aide du Natural Language Processing (NLP), un algorithme qui extrait les mots clés à partir de texte écrit. Pour chaque radiographie, le système interne de recherche avait besoin d’une liste de mots clés indiquant les anomalies spécifiques visibles sur l’image. "Le NLP va bien au-delà de l’identification de modèles, poursuit le Dr Montana. Il utilise des techniques d'IA pour déduire la structure de chaque phrase écrite. Par exemple, il identifie la présence de résultats cliniques, les localisations anatomiques et de leurs relations. Le développement du système de NLP pour l'étiquetage à grande échelle des radiographies thoraciques a été une étape cruciale dans notre étude. »
Une réduction significative des délais d'attente
Le NLP a analysé le compte rendu radiologique afin de hiérarchiser chaque image comme critique, urgente, non urgente ou normale. Un système d'IA pour la vision par ordinateur a ensuite été formé à partir d'images de radiologiques étiquetées afin de prédire la priorité clinique. Les chercheurs ont testé les performances du système en matière de hiérarchisation dans une simulation analysant un ensemble indépendant de 15 887 images. Le système d'IA distinguait les radiographies thoraciques anormales des normales avec une grande précision. Les simulations ont montré que les résultats critiques pouvaient être traités par un radiologue au bout de 2,7 jours en moyenne avec s'il était aidé par l'IA, contre 11,2 jours en moyenne en pratique classique.
Vers un système de génération automatisé de phrases pour les interprétations ?
"Les premiers résultats rapportés ici sont intéressants, car ils démontrent qu’un système d’IA peut être formé avec succès à l’aide d’une très grande base de données radiologiques de routine, remarque le Dr Montana. Avec une validation clinique plus poussée, cette technologie devrait permettre de réduire considérablement la charge de travail d'un radiologue en détectant tous les examens normaux, de sorte que l'on puisse consacrer plus de temps à ceux qui détectent une pathologie." Les chercheurs envisagent d'étendre leurs recherches à une taille d'échantillon beaucoup plus grande et de déployer des algorithmes plus complexes pour de meilleures performances. Les objectifs de recherche futurs comprennent notamment une étude multicentrique visant à évaluer de manière prospective les performances du logiciel de tri.
"Une étape majeure de cette recherche consistera en la génération automatisée de phrases décrivant les anomalies radiologiques observées sur les images, conclut le Dr Montana. Cela semble un objectif réalisable."
Bruno Benque avec RSNA